
AD-A168 185 FLEX PASCAL: AN IMPLEMENTATION OF THE ISO-PASCAL
PROGRAMMING LANGUAGE(U) ROYAL SIGNALS AND RADAR
ESTABLISHMENT MALVERN (ENGLAND) K CURTIS ET AL DEC 85

UNCLASSIFIED RSRE-MEM O- 39e8 DRIC-R-99B99 FG 9/2 U

EhhEElllEEEllE
IIIIIII

ii~

uuiu.~ 112-01

1.25'-1111114 1.6

MICROCOPY RESOLUTION TEST CHART

-NwA.- p

Wi

- -X V

ROYAL SIGN,,ALS &4 ,.t

,~4

FLEX PASCAL: AN IMPLEMENTATION OF THE I$O.PASCAL
PROGRAMMING LANGUAGE

Authors: K Curtis, P D Hammnond 3

and P D Taylor

4 pROCURfE$ET EXECtI IVE*
ST taw,

Of *,". F, b "II7 7~

11 W

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3908

Title 7a Pascal : An implementation of the ISO-Pascal

programming language

Authors K. Curtis, P.D. Hammond & P.D. Taylor

Date , December 1985

Summary

The Flex-Pascal compiler runs on the RSRE Flex computer
architecture, which is currently available on the ICL Perq 2
workstation. Flex-Pascal conforms to the ISO 7185 (BS 6192) standard
for Pascal and provides (as one exLension) a separate-compilation
facility. This paper discusses the use of ISO 7185 and the BSI Pascal
Validation Suite, and criticises areas of Pascal which, by their nature,
have proved particularly difficult to implement.

Copyright

Controller HMSO London
1985

"-,'.l~~%Js~I ,l, :'.... .,V. ',,,''- a .,.,"',"' a a," .". " a J " " '""'""" " '~ '

Contents

1. Introduction

2. The Structure of the Compiler

3. The ISO Standard and BSI Validation Suite

4. Difficulties of Implementation
It. 1 Sets
4.2 Records
'i.3 For Loops
4-.- Formal Parameter Specification

5. Separate Compilation

6. External Files

7. Comments on Possible Extensions to ANSI-Pascal

8. Summary

Acknowledgement

References Accession For

NTfS GRA&I
A DTIC TABAppendix Unannounced [

The Implementation of Sets ustificatio

By
Distribution!

Availability Codes

Avail and/or
Dist Special

30

I .._%. 4 e'''-o -1 1 vi e ,e , o* 0 S..., .S 0-. -0 0. 0. 0..-...- 0...- S... ..-. S S .S .S Z> ,.,. . - .-, ,... -.
% " . % % " . " % -. . % ". % .' -,% % ". . . %,. % % " ,.-, % % ",% - ','o ,% • . .. X.: ,,*

1 Introduction

The Flex-Pascal compiler runs on the RSRE Flex computer architecture
[Currie:81, 83) [Foster82], which is currently available on the ICL
Perq 2 workstation. Flex-Pascal conforms to the ISO 7185 standard
CBSI,82] for Pascal and provides (as one extension) a
separate-compilation facility. This paper discusses the use of ISO 7185
and the BSI Pascal Validation Suite, and criticises areas of Pascal
which, by their nature, have proved particularly difficult to implement.

Section 2 describes the overall structure of the Flex-Pascal
compiler. Section 3 discusses the ISO standard for Pascal and the BSI
Pascal Validation Suite which was used to provide a test harness for
the compiler.

Section It. describes the implementation of particular areas of
ISO-Pascal and difficulties caused by the nature of the standard.
Suggestions are made as to how matters could be improved.

As an extension to ISO-Pascal, Flex-Pascal provides a separate
compilation facility; this is discussed briefly in section 5. Section 6
describes external files, and the way that they are treated on Flex.

A review of the extension proposals for ANSI-Pascal and a discussion
of their impact for the Flex compiler is contained within section 7.
Section 8 summarizes the benefits of the ISO standard.

%S

I

[,1
,U

• • o • • • • O • • • .o • •..:

2 The Structure of the Compiler

The Flex-Pascal compiler is written in Algol68 and is composed of
about fifty modules i.e. separately-compiled units. As is usual on Flex,
the Pascal compiler will indicate compilation errors by invoking the
editor and arranging to display messages at appropriate places in the
text. Thus, using the editor, one can step from one mistake to the next
making corrections there and then.

If a Pascal program fails at run-time then the Flex system can Le
used to diagnose the failure. A trace of procedure calls is given; for
each level the approximate place of the failure in the text is marked
and local values are available. These are actual values and can be
manipulated, e.g. variables can be examined, arrays indexed and
procedures called.

The Flex-Pascal compilation system is two-pass with the
intermediate code consisting of a TenI5 node tree. The two passes are
illustrated by the diagram below

Pascal compiler Tenl5 translator
Pascal text --- > TenI5 tree --- >

(front end)

Tenl5 is a strongly-typed, high-level program representation
suitable for compiling many different languages into. The Flex-Ada
compiler also produces TenI5 and it is intended that all new Flex
compilers will do likewise. Thus, Teni5 facilitates mixed-language
programming. It is also possible, although less easy, to call Algol68
procedures from Tenl5 and vice-versa.

One of TenI5's strong points is the lack of any implicit coercions.
every dereference and range change must be explicit. Consequently
stringent checks are made by the Tent5 translator on the output from
the front end of the Pascal compiler. This forces the correct
implementation of difficult areas in Pascal by preventing any
'cheating'.

The compiler is syntax driven, being accessed through procedure
calls embedded in the syntax. The syntax given in the ISO standard had
to be transformed into LL(1), and use was made of SID [Foster:68J,
[Goodenough :85). An LL(1) grammar can be used to analyse input by just
looking one symbol ahead with no back-tracking. The output from SID
consists of a syntax analyser which manipulates a set of stacks and
calls the embedded procedures. It is these procedures that constitute
the body of the compiler.

2

....----------------...... . -i • • • • -, -4

. .. .' j.' : ' ' ' '

pW 1 W

3 The ISO Standard and BSI Validation Suite

The Standard

" The implementation of Flex-Pascal was required to conform to ISO
standard for Pascal. The document used was the British Standard3
Institution (BSI) specification for the Computer Programming Language
Pascal (BS 6192) which has been adopted by the International
Organization for Standardization (ISO) to form the technical content of
the standard ISO 7185. The BSI provides a Pascal quality control package
as part of its compiler validation service, and an important element in
this package is the Pascal Validation Suite (PVS). Version '1-.8 of the
PVS was used to form a test harness for the Flex-Pascal compiler.

*" The standard and the validation suite both refer to processors not
compilers. A processor is a system that accepts a program or input,
prepares it for execution and executes it with data to produce results.
For example, the Flex-Pascal compiler in itself is only part of a
processor of which the run-time system, the computer (ICL Perq) and
operating system (Flex) form the rest. The standard applies to both

*: processors and programs, so that any conforming program should
compile and run on any conforming processor. This means that Pascal
programs should be highly portable between conforming processors.

The standard defines two levels of compliance, level 8 and level 1,
the difference being that conformant array parameters are only present
in level 1. Conformant arrays allow a procedure to have variable size
array parameters.

The standard defines errors as "A violation by a program of the
*; requirements of this standard that a processor is permitted to leave

undetected". That is, a processor need not detect all errors. However,
the documentation that accompanies each processor is required to state
which errors are always detected. There are fifty-nine errors
specified in the standard.

Whilst the standard goes a long way to defining precisely the syntax
and semantics of Pascal, there are areas where it is not clear what the
interpretation should be. For example when defining the meaning of the
statement

read(f, vI, ... , vn)

where f denotes a file, the standard says that this is equivalent to

begin read(f, vI); ... ; read(f, vn) end

Now suppose that the statement is

3.1

,0':L : :J ,-- "_ _ _-_60 0 0 0 0 0 S S S.. r-,. . -r 7 7.- . -.
". *ce: .+; *'-'* . .-- "': ':-";'" - d" .V - .-" "". .. ".5 -. .5 -. '. "--.". -- ' '

:'+,'." " +. "L.,+' ,.
" . ' ' . " + "~~~.5 . . " - . " " . " " " "" " " "L '

I " f''-i i 7 .i .\ *
-

%' *
+

" .+' , " -. S. .S . - % '% . " . . , - . . , , - . 5

read(af[i], i, n)

where af is an array of files. Either the reading of i could change the
file n is read from, or the file could be accessed once and i and n read
from the same file.

Similar problems occur in the definitions of "write", and the
transfer procedures "pack" and "unpack". In these areas where the
meaning in the standard is ambiguous, the Flex-Pascal compiler is
nearer to the ANSI standard (ANSI/IEEE 778X3.97-1983) which has gone
some way towards defining these areas more precisely.

The Validation Suite

This is a suite of Pascal programs designed to test whether or not a
processor conforms to the ISO standard for the language Pascal. It is
split up into eight main sections:

1. Conformance
This section contains programs which all conform to the standard.

Each program tests one or more features of the language. For a
processor to be validated it has to compile and run successfully all the
programs in this section.

2. Deviance
Each program in this section does not conform to the standard in

some way. Therefore a processor should fail to compile and run every
program; failures normally occur at compile time. The sorts of things
tested for are extensions to the standard, failure to check some
feature, or some fault common amongst unvalidated processors.

3. Implementation Defined
These are areas in the standard where it is not defined what every

processor should do, but the behaviour of each individual processor
must be documented. The programs in this section each test such an
area and should compile and run successfully. Each program prints out
details of what the processor does. Examples of such features are the
ordinal number corresponding to each value of type char, and default
Total Widths when writing to Pascal Textfiles.

tt.. Implementation Dependent

Some areas in the standard need not even be specified for a
particular processor. A program which depends on such a feature does
not conform to the standard. The programs in this section however,
give details about what happens in particular instances. Mostly these
are the order of evaluation of items within a single statement, for
example the order of evaluation of array indices.

3.2

S.'.
v... • • • -. -. . • • • •

;....-. - .'.-..,.-.,:.-" ..' ... '-....-.' " * .. .-'-. .. . -.... .-.-. ' '.-. -. .-..-.- '..-.-..

S. Error Handling
The programs in this section test which errors, as defined in the

standard, are detected and which are not. Each test consists of two
programs: a Pretest which must compile and run successfully, and a
program which is similar to the Pretest except that it contains an
occurrence of the error being tested for. A processor must fail to run
all programs that contain the errors which are claimed to be detected.

6. Quality
The tests in this section examine the "quality" of a processor.

Whether a processor is successful in compiling and running this type of
program makes no difference to the validation. The tests examine such
things as the accuracy of real numbers, restrictive limits, for example
on the depth of nesting procedures, or performance tests that can be
timed and compared to other processors.

7. Extensions
These tests contain extensions to the standard that have been

approved by the Pascal Users' Group. However programs containing
these extensions do not conform to the standard and a processor should
reject these programs. A validated processor may have a switch to
allow/disallow extensions. The extensions in Flex-Pascal, which
include a separate compilation system, can thus be enabled at compile
time.

8. Level I
This section contains programs which use conformant arrays. A

processor that is compliant at level 0 should reject all of these
programs whereas a processor compliant at level 1 should treat each
test according to its subclass (which is one of the previous sections).

Whilst the suite tests many aspects, it obviously cannot test
everything, yet it is tempting to use it as the only or major method of
testing. This is a mistake as a processor may pass all the tests in the
suite and still contain many errors, as was found with the Flex-Pascal
compiler.

3.3

0 0 0 0 0 0 6 0 0 0 0 6 0 0 T i76L2~A. k.J. -~ -"a ,

4.0 Difficulties of Implementation

There were four specific areas of the standard which caused some
difficulty in the implemention of the Flex-Pascal compiler and which
could, in our opinion, be improved upon. These areas are: the "width"
and implementation of sets; checking the accesses to the variant parts
of a record variable; the declaration and scope of the loop counter in
for-loops; and the specification of procedural parameters.

4.1 Sets

The values of a Pascal set-type are defined as the powerset of
another (ordinal) type, known as its base-type. For example, if S is the
set-type whose base-type is the subrange 1- 3, then the eight possible
values of S are:

11, 2,3). 11,2), (1,3), 12,3), (1), (2), (3) and I)

In general, if a base-type has n values, then the set-type has 2'
-~ values. The operations applicable to all set-types are: union,

intersection, difference, equality, inequality, membership, and set
inclusion < ,-,~ >, in , <=, >=). Set values can be constructed by

* enclosing in square brackets a list of single values or ranges to
indicate those members present. Set-types may be designated packed to
indicate that storage is to be optimized at the expense of execution

* speed of set-operations.

Originally Wirth [Wirth:71] implemented Pascal sets as one machine
word, with each bit indicating whether an element was present in a set
or not. Consequently, the cardinality of a set was limited by the length
of a machine word (60-bits) and the least possible ordinal-value of a
member was 0. Such restrictions made operations on these "narrow"
sets very efficient.

The ISO standard relaxes these constraints and "widens" sets such
that it is possible to declare sets whose elements may lie anywhere in
the integer range (e.g. a set may contain elements ranging from -10 to
- 1, or even -maxint to maxint). If an implementation were to be based

on a simple extension of Wirth 's method and represent sets as n-bits
~5 (for a base-type of n values), then this would clearly require aI

ridiculous (if not impossible) amount of store for large n.
Consequently, a new approach must be adopted if sets are to be
implemented according to the standard. Such implementations will need
to optimise the amount of store required for each particular set-value.

This is likely to lead to inefficiences (in time and/or space) over

earlier methods: let us consider two possibilities and compare themI
with Wirth's implementation of "narrow" sets.

710

A value of a set-type may be implemented as a (possibly ordered)
list; it is then a simple matter to cater for "wide" sets. Unfortunately
the implementation of set-operations becomes more complex. Union, for
example, does not just involve concatenating two lists, but also
ensuring that no duplication of elements occurs. This extra complexity
will undoubtably lead to a reduction in the execution speed of
set-operations. However, this is not the greatest drawback of this
method; to represent a set with m members would require typically 2
words per member (1 word for the ordinal-value of the member, and 1
word for the address of the next member), a total of 2am words. Using
Wirth's method, just I word is required to store a set, irrespective of
the riimber of members in it. Using a list to represent "wide" sets is
therefore slower than using Wirth's "narrow" bets, and certainly much
more expensive in terms of storage.

A second method of implementing "wide" sets, and the one that has
been adopted for Flex-Pascal, is to u.. one-dimensional arrays of
booleans. These boolean arrays observe certain conventions:

(a) The empty set ({}) has bounds 1:0;

(b) A non-empty set has upper bound equal to the ordinal-value of the
greatest member;

(c) A non-empty set has lower bound equal to the ordinal-value of the
least member;

Note that the upper and lower bounds are not defined as the greatest
and least ordinal-values of the base-type. Consequently, two set values
of the same base-type will not (in general) have the same bounds.

The indication of the least and greatest (actual) set members is
crucial to the implementation method. All set-operations must preserve
these properties. By making the size of an array cover only the range of
members that are actually in the set, and provided this actual range is
not too ambitious, it is possible to represent a set whose base-type
may cover any range of values.

This method places no restrictions on the cardinality of sets nor on
the least ordinal-value of set members, but it does involve a practical
limit to the range of ordinal-values of (actual) set members. It is
found that for ranges of up to 162,., Flex-Pascal sets work adequately.
Greater limits are possible, but a Pascal program may require a large
amount of store in order to run. In terms of storage, this method is
comparable with Wirth's, although set-operations are again more
complex (see below), and therefore, much more time consuming.
However, it is hoped that in the near future, logical operations will be

. . 4.2

,_--
,--.-- 0S

available in Ten15 to perform AND, OR and NOT on boolean arrays, and thus

lead to an improvement in speed.

As this second method is the one chosen for Flex-Pascal, it will be
illustrated further. Consider the type set-of-integer; there are

2 (2
"maxint+) different values of this set-type, of which one example

is:

{-10, -6, -3, 8, 1, t}

This is represented as the boolean array with bounds -10:4- whose value
is:

element -1 -9 -8 -7 -6 -5 -4- -3 -2 -1 8 +1 +2 +3 +

value T F F F T F F T F F T T F F T

To determine whether a particular value, v, with ordinal-value n, is a
member of a set represented by an array A, one first examines the
bounds of A; if n lies outside those bounds then v is not a member,
otherwise the boolean value A yields the answer.

n

The union of two sets (S = SI U SI, where S, Si and S2 are
represented by arrays A, Al & Al) is performed as follows: if Si = {

then A = A2, if S2 = } then A = Al, otherwise a new array, A3, is
created whose bounds are chosen to cover the combined ranges of Al
and A2 (i.e. LWB A3 = minimum(LWB Al, LWB A2), UPB A3 = maximum(UPB Al,
UPB A2)). All the elements of A3 are initialized to FALSE. The region of
A3 that corresponds to Al is then made equal to Al, and the region in A3
that corresponds to A2 is OR-ed with A2. The results of all
set-operations must maintain the properties (a), (b) and (c) given
above, and in some cases the final array (A3) may have to be trimmed to
achieve this. In the case of set union however, this is never necessary,
as the lower and upper elements of A3 must both be members of S, and
so A = A3.

Other set-operations follow in an obvious manner. Appendix A
contains the text of an Algo168-RS [Woodward:83] module that defines
the data structure used for sets and describes the algorithms used for
set-operations.

To summarise, one finds that the Pascal programmer nearly always
wants the efficiencies of "narrow" sets, and is content to live with -

and often does not notice - their restrictions. In fact, this preference
is so strong amongst the Pascal fraternity, that there is an open

_ conspiracy to ignore the ISO definition of "wide" sets. This conspiracy
even extends to the BSI's own Pascal Validation Suite, where programs
that test whether negative elements are allowed in sets are classified
not as conformance, but as quaLLty tests. This pretence is

-S1

'..

,... .N,-"-

il

understandable, both from the implementors' and users' point of view.
Considering the strength of feeling for "narrow" sets, it is difficult
to imagine why the BSI 's Technical Committee ever decided to opt for
anything else.

The authors of this paper suggest that the ISO standard be modified
* to define clearly an imp lementation-def ined maximum cardinality for

sets, and that the least ordinal-value of a set member be 0. Following
* this amendment, "narrow" sets would get the official status that they

so clearly deserve.

* 4.2 Records

A Pascal record comprises a fixed part and a variant part each of
which can be empty. The fixed part consists of a number of components
of different types and the variant part is a group of objects, known as
variants, each of which is like a Pascal record. The behaviour of the
variant part is such that at any time one, and only one, of the variants
is active. It is only when a variant is active that its components are
available for use as fields of the record.

Furthermore, variant parts can take one of two different formats
which affect the way components are accessed. The first sort, a strong

- variant part, is one with a tag identifier. Strong variants are made
active by assigning an appropriate value to the tag identifier. The
second sort, a weak variant part, has no tag identifier and variants are

* made active by the act of accessing one of its components.

The rules on accessing components of weak variant parts mean that it
is never an error to access any component. However, this does not mean
that errors cannot occur whilst accessing such components, since an

-undefined value is automatically used if the access which activates a
variant occurs on the right-hand side of an assignment statement.
Strong variant parts have much more stringent rules for accessing
components.

In the Flex-Pascal compiler each variant is a reference to a structure
*of the components of that variant. A variant part then consists of the

tag and a union of void plus all the variants. Unions are dynamic modes
specified by a list of possible modes that could be present. Initially
the union has mode void, denoting that none of the variants is active.

* When a variant is active the union has the mode of that variant. For
strong variant parts each access to a component involves a check on the

* union, asserting that the required variant is active. When the tag
* identifier is assigned to, space is created to hold the components of
-: the new variant, and a reference to the space is assigned to the union.

This ensures that the components of the new variant are initialised
properly. For weak variant parts no checks can be made but new variants
are made active by the same process.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

One requirement of the standard which is difficult to implement is
the following: "it is an error unless a variant is active fcr the
entirety of each reference and access to each component of the
variant". This means that it is an error to make a different variant
active when a reference to a component of the previously active variant
exists. The following example illustrates the problem :-

program variantproblem(output);

type range = 1..2;
rec = record a:integer;

case tag:range of

1:(b:integer);
2: (c : real)

end;

var r:rec;

procedure p (var y:integer;var z:rec);
begin

z.tag := 2;
4 writeln(y)

end;

begin
r.tag := 1;
r.b := 2k;

p(r.b,r)
end.

When the procedure "p" is called a reference to "b" - a component of
the active variant - is established and passed as a parameter. The
whole record variable is also passed by reference and the first
statement of "p" changes which variant is active by assigning to the
tag identifier. This is an error because via "y" a reference exists to a
component of the previously active variant. The error is difficult to
detect since it depends on the actual parameters of this call of p".

To detect this error it is necessary to know whether a reference is a
component of a variant, as well as which record variable it is
associated with. The ISO standard forbids an actual var parameter from

* being a tag identifier which prevents a more difficult version of this
problem from arising.

The Flex-Pascal compiler does not detect this error. But because the
space used by the new variant is disjoint from the space used by the old

"1+-.5

0~~~~~~1. "1. 0 S 6 0 S

"~ *k

one, "y" retains its value and 21t will be output. The established
reference keeps the space used by the old variant alive for the entirety
of the reference.

4.3 For Loops '

The following is the syntax of ISO-Pascal for loops:

for-statement ="for" identifier " :=" for-list "do" statement. .4

4.

for-list = expression "to" expression
expression "downto" expression.

The identifier that serves as the loop counter is a variable and is
declared - as are all Pascal objects - in the declaration part that
precedes the statement part of a block. Consequently the identifier is
of a wider scope than that of the loop, and this causes a few problems
as will be seen.

The loop counter must be of an ordinal-type, and the expre,sions in
the for-list must be compatible with it. The occurrenct of the
reserved word to (downto) in the for-list means that the loop counter
takes a sequence values starting at the first expression and increasing
(decreasing) by one until the second expression is reached; for each
value in the sequence the repeated statement is executed once.
However, if the first expression should have a value greater (less)
than that of the second, then the repeated statement is never executed.

It is the intention of the ISO standard that the loop counter shall not
vary within the repeated statement. This is not easy to ensure at run
time, so a few "behavioural" rules are introduced to enable invariance
to be checked at compile time. In order for a variable to be used as
loop counter, it must satisfy the "behaviour" rules, which may be
summarised as follows:

1. The variable must be declared locally;

2. There must be no "threat" to the variable in the repeated statement
nor in any procedure or function.

A "threat" to a variable is anything that couLd change its value, for
example: being assigned to, or being an actual var parameter or being
used as a loop counter.

To check that a variable obeys these rules is a tedious matter for a
*' compiler. Because a loop variable is declared in the same way as any

other variable, and for that matter, outside the loop it is permitted to
assume the role of an "ordinary" variable, all variables are potential

0 0 '0 0- 0 6 * -

[6

%M 7 77--7

loop counters. Thus, in the case of the front end of the Flex-Pascal
compiler, the behaviour of aLL variables must be monitored in case
they are used as loop counters. This adds an unnecessary compile-time
overhead.

Languages such as Algol68 [Algol68:761, and more recently, Ada
[Ada:83], restrict the scope of the loop counter by making the
for-statement serve as the declaration of a constant whose scope Ls
the for-statement. This solves all the problems but perhaps would not
suit the Pascal doctrine of not mixing declarations and statements. But
something more befitting Pascal would be to have a section in the
declarations part specifically for loop counters; the Pascal
programmer would then state his intentions for a variable by declaring
it in the appropriate section. Behavioural checks then need only be
performed on variables declared in the special loop-counter section.

Another curiosity of ISO-Pascal is that the value of the variable used ,4
as the loop counter shall be undefined after the execution of a
for-statement (except if left by a goto). This means that, following
the normal completion of the for-statement, the loop counter shall not
propagate any information. This is tantamount to admitting that its
scope should be restricted to the for-statement. The loop counter may
propagate information when jumping out of the loop, but this does not
detract from our argument; this propagation is merely an unpleasant
concession to facilitate implementation.

4.4 Formal Parameter Specification

When Wirth first described Pascal, its syntax allowed procedural
parameters. However, the programmer was unable to specify them with
sufficient precision in order to prevent insecurities and misuse. For
example, the following program was syntactically correct:

program example 1;

procedure pl (i : integer); begin end;

procedure p2 (var j : integer); begin end;

procedure p3; begin end;

procedure pit (var i,j : integer); begin end;

procedure p5 (procedure q I); begin q l end;

begin p5(pl); pS(p2); pS(p3); p5(p.)end.

One of the aims of the BSI in creating its standard Pascal was to rid
it of all the ambiguities and insecurities that plagued its precursors.

4-.

0 0 *e 0 0 0 0 0 0 S S S~-u
. .'.- -* .- -. ,' . - .4 -'. 4 - - -. .. .-. 4- '

To this end a new syntax for formal parameters was introduced, an

abstract of which is the following:

procedure-declaration > procedure-heading ";" procedure-block.

procedure-heading = "procedure" identifier [formal-parameter- list].

formal-parameter-list = (" formal-parameter-section
. " formal-parameter-section

formal-parameter-section > identifier-list • type-identifier I
"var" identifier-list ":" type-identifier I
procedure-heading.

The program examplel" does not conform syntactically to
ISO-Pascal, and so would be rejected by a compiler. Moreover, as all
formal procedural parameters are now specified to the same extent as
procedures themselves, the compiler checks the congruency of formal
and actual procedural parameters. The objective has been achieved: no
more insecurities. Unfortunately, the same syntax (procedure-heading)

- has been used in procedure-declaration as well as
formal -parameter-section. Consequently, when specifying a procedural
parameter, q, the programmer must supply superfluous names for the
formal parameters of q, if it has any. The following example will
illustrate this.

program example2;

procedure p6 (i : integer); begin end;

procedure p7 (procedure q2 (j integer)); begin q2(1t2) end;

begin p7(p6) end.

In "example2" the formal parameter "q2, is specified by naming its
parameter as "j" of type "integer". However when calling "p7", the
actual parameter "p6" does not need to have matching parameter names
with "q2". Yet what must match is the number of parameters of "p6" and
"q2', and their corresponding types. Futhermore, the sections in their
formal parameter lists must also match. The example below breaks this
last rule, and so would fail to compile.

,o1
. 4

a. t'-'- a'~a a-a~~a -a~a.&&4..A - *..8,

0 0 '0 0 0 0 0 0 S S S S S S - -

program example3;

procedure p8 (i : integer; j : integer); begin end;

procedure p9 (procedure q3 (i,j : integer)); begin q3(4.2, 4-2) end;

begin p9(p8) end.

Here the formal parameters of "p8" and "q3" are not congruent
because "pB" has two sections in its formal-parameter-list (each of
which contains one integer), and "q3- has only one section (which
contains two integers). Thus the actual parameter "p8" does not match
the formal parameter "q3".

Although only procedural parameters have been discussed, ISO-Pascal
imposes similar restrictions on the matching of actual and formal
functional parameters. In both these cases a great improvement has
been achieved over Wirth's original language; the number, type and
sort of parameters is now significant. Unfortunately, the names of
parameters must be supplied, although this information is superfluous
to congruence and therefore irrelevant. Parameter sections are also
required to match (see "example3") and this leads to (unwanted)
pedantry from the compiler.

9D

4.

"'I

"-.9

~-' • U •~U'U~~l .o ' i... --- ... - • - - • • • ,

0 % % %, %

ins

5 Separate Compilation

The ISO standard does not define any facilities for separate
compilation in Pascal. There are, however, certain "hints" contained in
the BSI specification; program parameters, for example, may be
variables of any type, although it is only the behaviour of file
variables that is defined. The directive forward is the only one that is
defined, although external is discussed. Perhaps separate compilation
can be facilitated using these "hooks"?

The answer is, predictably, no. There is no obvious way to compile
types separately, nor is it clear what is meant by them. However
Flex-Pascal does support separate compilation [Taylor:86] which
provides the same strong type-checking across separately-compiled
units as it does within one unit. Many other implementations also
provide such a facility, but no two are likely to be the same. The ANSI
candidate extension proposal for separate compilation [Pascal 2:8L-]
would provide some much needed standardization in this commonly-used
area, although the proposal seems to be providing thinly-disguised Ada
library packages.

.4L

" 4

5

45 . 4 0 0 0 0 0 0 '0 9

4, 4,~. "% ,P,,'"%*J-%J % !

6 External Files

Flex-Pascal files are handled in an object-oriented manner, being
passed as parameters to Pascal programs and system utilities which act
upon them [Hammond:85]. In the Flex environment under which programs
are compiled and run, objects have definite modes and the command
interpreter [Currie:82], is used to manipulate these objects. Thus,
from a Pascal program with one parameter of type text, a procedure is
derived which has mode (Textfile->Textfile). This procedure can be
applied to an actual Textfile using the command interpreter. The
Textfile value delivered is simply a copy of the parameter to facilitate
further procedure calls.

Files exist in two distinct states: disc-files and mainstore-files. A
disc-file is a permanent value which can be kept in the Flex filestore.
A mainstore-file is a temporary value and is the form of a file that is i
passed to a Pascal program. System utilities can be used to convert a
file between the two forms.

Disc-files can never be altered, only new disc-files created.
Applying a Pascal program to a mainstore-file can change the
mainstore-file but not the disc-file from which it was generated. If
the present contents of the file are to be kept then a new disc-file
must be created with the appropriate system utility. A disc-file is like

-4.

a frozen copy of a mainstore-file.

Blank or empty files are created by a system utility. In order to
generate a mainstore-file with the correct mode the Pascal type of the
file must be supplied. The utility takes an editable file which defines
the file type using Pascal constant and type definitions.

4,,

p.

6

* 0 0 0 0 0 0- 0 0 0 0 0
a 4

4
.

% .. ~4:;~~-.4 . 144 1' .0.4, 'Va'' l'1% ~\ . 4*

7 Comments On Possible Extensions to ANSI-Pascal

This section offers comments on extensions proposed in the
candidate extension library [Pascal 1:84.3 produced by the Joint
ANSI/IEEE Pascal Standard Commitee, for the ANSI/IEEE standard for
Pascal (ANSI/IEEE 778X3.97-1983). The ANSI standard is based
extensively on ISO 7185, but omits the conformant array schema. The
library of candidate extensions is not final and items in it are not
guaranteed to be included in any new standard. Also offered are
comments on proposals for additiors to this library [Pascal 2:8t].

Most of the candidate extensions are easy to implement in the
Flex-Pascal compiler (e.g. underscore characters in identifiers) and
so are not discussed further. However a few of the extensions raise
some interesting points with regard to the changes that would have to
be made in the Flex-Pascal compiler in order to implement thrum.

Constant Expressions

This extension would allow the right-hand side of a constant
declaration to be an expression, whereas now it can only be a constant
denotation or a constant identifier.

The extension specifies that the expression must have an unambiguous
base type, and could not depend on run-time results or user-defined
functions. However this still allows an expression such as that for
"sin68" in the fragment of program below:

const sin60 - sin(60);
var x, angle : real;
begin

angle .= 68;
x := sin(angle)

end

The call of the sine routine in the expression for "sin6O" would be
evaluated at compile time, whereas the call of the sine routine in a
program, procedure or function block, such as the value for 'x", would

*. be evaluated at run time. One would expect the same result to be
. obtained for the same parameter in both cases, which means that the

"d sine routine called in the compiler must be the same as that used in the
code produced for the program.

A similar problem may arise if cross-compiling, that is compiling on

7.1

m- - _ - - - - - - ----- __• - _ _• _ _ _ _ _ _ _ p
9 t.;. %% 0', *.* , 0 0., 0 ,.' ... 0,.. 0,. 0 . .. S S,. .. S. .. . -. 0 0 ,. -

;'a .,t,;" -- ,1. . %, .,4...- " ." ". -. " - "". -" " " " " " " ," " " " " """ " " " * " . " . " " " "
. % " ' e% % . , "". ". " " ?% " d " . .% . .' . % % " ." . • " " " ' . " ," . "

one machine (the host), producing code to run a different machine (the
target). Then if we have

const a = 16.231t.;
b = a + 5.223;

then the expression given for b would again be evaluated at compile
time. However it may be that the accuracy of the arithmetic of the host
machine is different to that of the target machine, or that the host
machine has no real arithmetic at all. The same reals as on the target
machine would then have to be implemented on the host machine.

Random Access Files

This extension would add a new type of file:

random-access-file = "file . index-type " "of" component-type.

with associated procedures so that access could be gained to a
particular element of the file without having to access all elements 5.

prior to it as in the sequential files in the standard at the moment.

As the number of elements in the file cannot exceed the cardinality of
the index-type, there is a fixed maximum size for each random access
file. This raises a problem similar to one in the area of sets: if one
declares a very large file, does the program always consume this
amount of space at the start of the program, or only increase it as
needed (as elements are put into the file) and maybe run out of store in
the middle of the program.

Out of the proposals in the foreword to the work in progress,
comments on separate compilation have already been made. One other
is:

Open/Associate and Close for Files

These extensions would allow associating a Pascal file with a
specific external data set, terminal, device, etc. and to specify

certain properties of that file. These seem to be too dependent on the
file system of the machine (e.g. by use of concepts such as block
sizes) to be in any way 'standard'.

7.2

0 * ** 0

* ~ ., S. Sv ... * *.
5

*.S' * 4 4

. , - .- , .I - . .d. : ,.. -;. r,,, ,, ,., %,

'" 8 Summary

In the previous sections much emphasis has been p!aced on those
aspects of the ISO standard which are ambiguous or could be improved.
However it must be stressed that the ISO standard was beneficial to
writing the Flex-Pascal compiler; it gave a definite basis from which
to work. It should also help to produce more portable programs as
processors complying with the standard should compile and run any
ISO-Pascal program. The use of Ten15 as an intermediate language was
also a great help as it meant that no 'cheating' was possible in
producing code.

Acknowledgement

The authors would like to thank Dr. J. M. Foster for all his advice
and he lp.

'777,

,

4w

% AA

% t:
'A

%"N

N.,

-- • • ' • • • O -O O--- O • • - • • 0 "p

References

[Ada:831 Ada Joint Program Office, "Reference Manual for the Ada
Programming Langauage", United States Department of
Deferise, ANSI/MIL-STD 1815 A, January 1983.

[Algol68:76] van Wijngaarden A. et al., "Revised Report on the
Algorithmic Language Algol 68", Springer-Verlag, 1976.

[BSI:82] British Standards Institution, "Specification for the Computer
Programming Language Pascal", BS 6192, 1982.

[Currie:81) Currie I.F., Edwards P.W. & Foster J.M., "Flex Firmware",
RSRE Report 81869, 1981.

[Currie:82] Currie I.F. & Foster J.M., "Curt : the Command Interpreter
Language for Flex", RSRE Memorandum 3522, 1982.

[Currie:83J Currie I.F., Edwards P.W. & Foster J.M., "Kernel and
System Procedures in Flex", RSRE Memorandum 3626, 1983.

[Foster:68] Foster J.M., "A Syntax Improving Program", Computer
Journal, VOL II, pp 31, 1968.

[Foster:82] Foster J.M., Currie I.F. & Edwards P.W., "Flex: A Working
Computer with an Architecture Based on Procedure Values",

K, RSRE Memorandum 3506, 1982.

[Goodenough:85) Goodenough S.J., Taylor P.D. & Whitaker G.D., "A Guide
to SID for Users of the Flex Computer", RSRE
Memorandum 3768, 1985.

[Hammond:851 Hammond P.D., "A Procedural Implementation of Pascal
Files on Flex", RSRE Memorandum 3883, 1985.

[Pascal 1:81) "Pascal : Foreword to the Candidate Extension Library",

ACM SIGPLAN Notices, vol 19, N- 7, July 198'.'
'I

[Pascal 2:84-) "Pascal : Foreword to Work in Progress", ACM SIGPLAN
Notices, vol 19, N2 7, July 198.

[Taylor:86] Taylor P.D., "A Separate Compilation System for
Flex-Pascal", RSRE Memorandum 3918, 1986.

[Wirth:71] Wirth, N., "The Programming Language Pascal", Acta
Informatica, vol 1, fasc. 1, pp 35, 1971.

9.1

S, 21A9 1 "'"~,.". . .***4 .9'".
'• 1 "p .

a•yd •4K *''0 J' • " , •,.t

tWoodward:83] Woodward P.M. & Bond S.G., "Guide to Algol 68 (for

users of RS Systems)". Edward Arnold, 1983.

9.21

V.-t

Appendix - The Implementation of Sets

DECS sets_m:

MODE SET = REF H1 BOOL;

* OP MIN = (INT a,b) INT:
4- IF a > b THEN b ELSE a FI;

OP MAX = (INT a,b) INT:
IF a < b THEN b ELSE a FI;

INT min _int = most negative inte9er,
maxint = most positive integer;

PROC union = (SET a,b) SET:
(INT upba = UPB a, upbb = UPB b, lwb_b = LWB b, lwb_a = LWB a;
IF upba < lwb_a
THEN b
ELIF upb_ < lwb_b
THEN a
ELSE HEAP [lwb_a MIN lwbb:upb a MAX upb b] BOOL c;

FORALL ci IN c DO ci := FALSE OD;
cllwba:upb-a AT lwb_a] := a;
FORALL bi IN b, ci IN c[lwb b : upb-b AT lwb bi
DO ci := ci OREL bi OD;
C

FI

PROC difference = (SET a,b) SET:
(INT upb-a = UPB a, upb-b = UPB b, lwb_b = LWB b, lwb_a = LWB a,

upper = upba MIN upbb, lower = lwba MAX lwb_b;
IF lower > upper
THEN a
ELSE INT first := lwb_a-1, last :: lwb_a-1;

% HEAP [lwb-a : upba] BOOL c := a;
FORALL bi IN b(lower:upper), ci IN cllower:upper]
DO ci := ci ANDTH NOT bi OD;
FOR i FROM lwba TO upba
WHILE NOT c(i) OREL (first := i; FALSE)
DO SKIP OD;
IF first < iwb.a
THEN HEAP [1:e) BOOL
ELSE FOR , FROM upb_a BY -I TO first

WHILE NOT c[i] OREL (last := i; FALSE)
DO SKIP OD;
c[first:last AT first)

FI
FI

PROC intersection = (SET a,b) SET:
,' (INT upba = UPB a, upbb = UPB b, lwb_b = LWB b, lwba = LWB a,

upper = upb-a MIN upbb, lower = lwb-a MAX lwbb;
IF lower > upper
THEN HEAP [1:01 BOOL
ELSE INT first := upper, last := lower-i;

HEAP [lower:upper] BOOL c;
FOR i FROM lower TO upper
DO c[i] := a[] ANDTH b[,i ANOTH (first : first MIN i;last : i; TRUE)
OD;
IF last < first
THEN HEAP [1:e BOOL
ELSE c[first:last AT first]
FI

* FI

PPOC equality = (SET ab) BOOL:
(LWB a = LWB b) ANDTH (UPB a = UPB b) ANDTH(BOOL eq : TRUE;

44

- 7 - 7

",' - "- - -. , ,'% - . 4 ,- '&-',-,,- ' X ,' ---- " -', '>-:," '- . .- 44, ,*-4'.. ", 4 " . '. - ". ,.-"4"--- 4 .. 4- . *.4**4. . ~ . .4.'. .4 %

.4,---4 4.4%i **~4~.4 . %

FORALL ai IN a, bi IN b
WHILE ai = bi OREL (eq := FALSE; FALSE)
DO SKIP OD;
eq

PROC inequality = (SET ab) BOOL:
(LWB a /= LWB b) OREL (UPB a/= UPB b) OREL

(BOOL neq := FALSE;
FORALL ai IN a, bi IN bWHILE ai = 6i OREL (neq :=TRUE; FALSE)

DO SKIP OD;
neq

PROC contains = (SET ab) BOOL:
(INT upb a UPB a, upbb = UPB b, lwbb = LWB b, lwba = LWB a;
lwb b >= lwba ANDTH upb-b <= upb_a ANDTH

(BOOL c := TRUE;
FORALL ai IN a[lwbb:upb_b AT lwb_b), bi IN 6
WHILE bi ANDTH (at OREL (c : FALSE; FALSE)); c
DO SKIP OD;
C

PROC iscontained (SET a,b) BOOL:
(INT upb a = UPB a, upbb = UPB b, lwbb = LWB 6, lwba = LWB a;
lwba >= lwb._6 ANDTH upb-a <= upbb ANDTH

(BOOL c := TRUE;
FORALL ai IN a, bi IN bllwb a:upb a AT lwba] "
WHILE ai ANDTH (bi OREL Cc := FALSE; FALSE)); c
DO SKIP OD;
C

PROC in = (INT i, SET s) BOOL: i >= LWB s ANOTH i <= UPB s ANDTH s[i];

PROC build = (VECTOR (] INT r,s) SET:
(INT upper : min int, lower := max_ int;
FOR i BY 2 TO UPB r
DO IF r~i+1J >= rhi)

THEN upper : upper MAX r[i+1];
lower : lower MIN r(i]

FI
00;

FORALL si IN s
DO upper := upper MAX si; lower := lower MIN si 00;

IF upper < lower
THEN HEAP [1:0] BOOL
ELSE HEAP (lower:upper] BOOL set;

FORALL seti IN set DO seti : FALSE OD;
set

FI

PROC constructor = (VECTOR [1 INT rs) SET:
(SET set = build(r,s);
FOR i BY 2 TO UPB r DO FOR j FROM r~i] TO r[i+1] DO set[j] = TRUE OD OD;
FORALL si IN s DO set[si) := TRUE OD;
set

KEEP uniondifferenceintersectionequalityinequalitycontainsis-contained,

inconstructorSET
FINISH

18.2

.. ~ .~
~~~~~~~~~~.-...'..... -. .. ..-.. . ....-..-..- . .. • . -... .. . .. ........-.. ,.. -. - . . .--



DOCUMENT CONTROL SHEET

Overall security classification of shet A S 4 .......................................... ........

(As far as possible this sheet should contain only unclassified Information. If it is necessary to enter

classified information, the box concerned must be marked to indicate the classification e (R) (C) or (S)

1. O IC Reference (if known) 2. Originafor's Reference 3. Agency Reference 4. Report Security

5. Originator's Code (if 6. Originator (Corporate Author) lame and Location
known) Royal Signals and Radar Establishment

Sa. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) lame and Location

Code (if known)

7. Title

FLEX Pascal: an implementation of the 150-Pascal progranming language

7a. Title In Foreign Language (in the case of translations)

7b. Presented at (for conference Papers) Title. place and date of conference

8. Author 1 Surname. Initials 9(a) Author 2 9(b) Authors 3.4... 10. Date pp. ref.

Curtis K Hammond PD Taylor PD

11. Contract lumber 12. Period 13. Project 14. Other Reference

15. Distribution statement Unlimited

Descriptors (or keywords)

continue on separate piece of paper ,.

Abi-tract

The Flex-Pascal compiler runs on the RSRE Flex compucor architecture, which is

currently available on the ICL Perq 2 workstation. Flex-Pascal conforms to the

ISO 7185 (BS 6192) standard for Pascal and provides (as one extension) a

separate-compilation facility. This paper discusses the use of ISO 7185 and the

BSI Pascal Validation Suite, and criticises areas of Pascal which, by their

nature, have proved particularly difficult to implement.

This memorandum is for advance information. It is not necessarily to be

regarded as a final or official statement by Procurement Executive, Ministry

of Defence.

S80/8



-- -. rn - - - - - -- -- - - -. - - -. --

'"a.
-a..

-p.,.

p.-

0

Q

.A14

*1~

-p.

'a

a.,.'


